Balanced model order reduction for systems depending on a parameter
نویسندگان
چکیده
We provide an analytical framework for balanced realization model order reduction of linear control systems which depend on an unknown parameter. Besides recovering known results for the first order corrections, we obtain explicit novel expressions for the form of second order corrections for singular values and singular vectors. The final result of our procedure is an order reduced model which incorporates the uncertain parameter. We apply our algorithm to the model order reduction of a linear system of masses and springs with parameter dependent coefficients.
منابع مشابه
Model Reduction for Aeroservoelastic Systems
A model-reduction method for linear, parameter-varying systems based on parameter-varying balanced realizations is proposed for a body freedom flutter vehicle. A high-order linear, parameter-varying model with hundreds of states describes the coupling between the short period and first bendingmode with additional structural bending and torsion modes that couple with the rigid body dynamics. How...
متن کاملApplication of Three Parameter Interval Grey Numbers in Enterprise Resource Planning Selection
This paper applies a new multi attribute decision-making (MADM) model to help companies for enterprise resource planning (ERP) selection problem based on Balanced Score Card method. This paper uses three-parameter interval grey numbers which is derived from Grey theory (was proposed by J. Deng). This numbers is used instead of linguistic variables. Beside, a new weighting method that outcomes f...
متن کاملApplication of Three Parameter Interval Grey Numbers in Enterprise Resource Planning Selection
This paper applies a new multi attribute decision-making (MADM) model to help companies for enterprise resource planning (ERP) selection problem based on Balanced Score Card method. This paper uses three-parameter interval grey numbers which is derived from Grey theory (was proposed by J. Deng). This numbers is used instead of linguistic variables. Beside, a new weighting method that outcomes f...
متن کاملSolving Parameter-Dependent Lyapunov Equations Using the Reduced Basis Method with Application to Parametric Model Order Reduction
Our aim is to numerically solve parameter-dependent Lyapunov equations using the reduced basis method. Such equations arise in parametric model order reduction. We restrict ourselves to the systems that affinely depend on the parameter, as our main strategy is the min-θ approach. In those cases, we derive various a posteriori error estimates. Based on these estimates, a greedy algorithm for con...
متن کاملModellreduktion für parametrisierte Systeme durch balanciertes Abschneiden und Interpolation (Model Reduction for Parametric Systems Using Balanced Truncation and Interpolation)
Zusammenfassung Der Beitrag stellt einen neuen Ansatz zur Parameter-erhaltenden Modellreduktion parametrisierter, linearer Systeme vor. Das Verfahren ist eine Kopplung des balancierten Abschneidens mit Interpolation, sodass Fehlerabschätzungen für die Qualität des reduzierten Systems ableitbar sind. Durch die Verwendung dünner Gitter zur Diskretisierung des Parameterraumes kann das Verfahren au...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1604.08086 شماره
صفحات -
تاریخ انتشار 2016